

GELATI MONASTERY (GEORGIA) CHURCH OF THE NATIVITY OF THE HOLY VIRGIN (1106 AD)

SCIENTIFIC INVESTIGATION ON THE MURAL PAINTINGS - PART II -

. . . .

November 23th, 2022

CUSTOMER:

ASSOCIATION GIOVANNI SECCO SUARDO via Mazzini, 13 24050 Lurano (BG)

Report by Dr. Geol. Davide Melica

Collaborators: Dr. Manuel Jardón Cabezas Dr. Llucia Bosch Rubio

Dr. Geol. Davide Melica - Consulenza e Diagnostica per il Restauro e la Conservazione

ITALIA - via Carlo d'Angiò, 31 73043 Copertino (Lecce) +39 347 1579 182 SPAGNA - Av.da de l'Alcalde Gisbert Rico, 8, 5 46013 Valencia +34 651 590 622

www.diagnosticarestauro.it info@diagnosticarestauro.it

1. INTRODUCTION

Upon the request of ASSOCIATION GIOVANNI SECCO SUARDO, a preliminary scientific investigation was carried out prior to restoration works of the mural paintings of the *Church of the Nativity of the Holy Virgin* in the Unesco World Heritage Site of *Gelati Monastery* (Georgia). This technical report is in addition to the previous one dated July 2021.

Despite the limitations of the analytical techniques employed, the aims of this study are:

- to characterise the pictorial layers and to identify the executive technique of the paintings through the examinations of stratigraphic sequences and identification of pigments and binders;
- o to distinguish the original layers from possible overpaints;
- o to identify the decay products.

2. SAMPLE LIST AND PHOTOGRAPHIC DOCUMENTATION

Samples are described in the following tables:

West arm

Code	Sample type	Sampling zone	Adopted analisys
UT	fragment of untreated plaster		
Am-Ox	fragment of plaster treated with Ammonium Oxalate	west arm, southern wall	OM-RL, micro-Raman,
Am-Ph	fragment of plaster treated with Di-Ammonium Phosphate		SEM-EDS

UT sampling point

Am-Ox sampling point

Am-Ph sampling point

Peeling test: untreated area

Peeling: treated area with Ammonium Phosphate

Peeling test: treated area with Ammonium Oxalate

Code	Sample type	Sampling zone	Adopted analisys
A1	gray pictorial fragment	west arm, western side (uncleaned zone)	ST, OM-RL, HT
A2	pale-yellow pictorial fragment with shiny appearance	west arm, northern side	ST, FT-IR
A3	gray pictorial fragment	west arm, western side (cleaned zone)	ST, OM-RL, HT
A4	red pictorial fragment with shiny appearance	west arm, northern side (uncleaned zone)	ST, FT-IR
A5	red pictorial fragment	west arm, northern side (cleaned zone)	ST, FT-IR

West arm

West arm

Code	Sample type	Sampling zone	Adopted analisys
31	blue pictorial fragment	west arm, western side, background	ST, XRF, OM-RL, HT
32	electric blue pictorial fragment	west arm, western side, background	ST, XRF, OM-RL, HT, FT-IR
33	gray pictorial fragment	west arm, western side	ST, OM-RL, HT
34	salt efflorescences	west arm, western side	FT-IR
35	blue pictorial fragment	west arm, southern side, left register, Saint's cloak	ST, XRF, OM-RL, HT, OM-TL, FT-IR
36	green pictorial fragment west arm, southern side, left register		ST, OM-RL, HT
38	blue pictorial layer fragment	west arm, northern side, right register	ST, XRF, OM-RL, HT, FT-IR
39	blue pictorial fragment	west arm, vault, background of the cross	ST, XRF, OM-RL, HT
40	fibers	west arm, northern side	OM-TL
41	red pictorial fragment with shiny appearance	west arm, northern side, right register	ST, OM-RL, HT, FT-IR
42	white pictorial fragment	west arm, northern side, left register	ST, OM-RL, HT
43	grey pictorial fragment with shiny appearance	west arm, southern side, left register	ST, OM-RL, HT, FT-IR

A1 sampling point

A3 sampling point

A2 sampling point

A4 sampling point

A5 sampling point

31 sampling point

32 sampling point

33 sampling point

34 sampling point

35 sampling point

36 sampling point

38 sampling point

39 sampling point

40 sampling point

40

41 sampling point

42 sampling point

43 sampling point

West arm

Code	Sample type	Sampling zone	Adopted analisys
M1	fragment of white restoration mortar	west arm, southern side	
M2		west arm, southern side]
M3	fragment of reddish	west arm, northern side	
M4	restoration mortar	west arm, northern side	
M5		west arm, vault	ST, OM-TL
M6	fragment of white restoration mortar		
M7	fragment of gray restoration mortar	west arm, vault	
M8	fragment of white restoration mortar		

M1 sampling point

M2 sampling point

M3 sampling point

M5, M8 sampling point

M4 sampling point

M6, M7 sampling point

North arm

Code	Sample type	Sampling zone	Adopted analisys
44	green pictorial fragment	north arm, background of the vault	ST, OM-RL, HT, FT-IR
45	blue pictorial fragment	north arm, background of the vault	ST, OM-RL, HT, FT-IR
46	blue pictorial fragment	north arm, northern side, Apostle's cloak on right side	ST, XRF, OM-RL, HT, FT-IR
48	brown pictorial fragment	north arm, northern side, middle Apostle's hand	ST, XRF, OM-RL, HT

44 sampling point

45 sampling point

46 sampling point

48 sampling point

3. ANALYTICAL TECHNIQUES

The adopted techniques are briefly described below:

- peeling test (Peel): to assess on site the degree of surface cohesion of stone materials. A strip of
 adhesive paper, having known dimensions and weight, is pressed onto the surface; after detaching
 it, it is weighed again with an analytical balance; the difference in weight corresponds to the weight
 of the material that adhered to it after its detachment. This value is indicative of the degree of
 cohesion of the material;
- **optical stereoscopic microscopy (ST)**: to verify the representativity of the sample and to provide a descriptions of its superficial morphology (stereomicroscope *Zetaline* model, 60X max);
- optical microscopy with polarized reflected light (OM-RL): sample is embedded in polyester resin block, which is grounded and polished to reveal a perpendicular section to the layer structure; this cross-section is observed under the optical polarizing microscope (Olympus, *BX51* model, maximum magnification 400X) in white and ultraviolet reflected light, in order to define the nature, the thickness and the sequence of the layers (*Normal 14/83*);
- optical microscopy with transmitted light (OM-TL): the sample is embedded in polyester resin and then glued to a glass-slide to prepare a thin section to be examined using a polarizing microscope (*Olympus, BX51* model). The optical and morphological properties of the phases present are used to identify the mineral constituents of plasters, mortars and stones and their structural and textural features, including primary and secondary calcite, gypsum and any other recognizable substances. Thin sections are described according to UNI 11176 "Cultural Heritage -Petrographic descrizione of a mortar"). Thin sections are prepared according to italian standard method NORMAL 14/83 "Sezioni sottili e lucide di materiali lapidei. Tecnica di allestimento";
- histochemical tests on cross-section (HT): specific tests using Black Starch (AB I, AB II), Acid Fucsin, Red Oil and Lugol, are used to define the class of possible natural organic compounds (protein, lipid or polysaccharide) contained in the paint layers (*Dimos I, modulo 3, 1978*);
- infrared spectroscopy (FT-IR): this technique allows to recognize the natural and synthetic organic compounds and the inorganic compounds referable to constitutive or degradation materials. Spectrum are acquired by means of a Perkin Elmer spectrometer *Spectrum Two* model, in ATR mode (Attenuated Total Reflection), in the range 4000-400 cm⁻¹, with a 4 cm⁻¹ resolution. Limits of the technique:
 - it is not possible to identify the sulphides, many of the oxides and the carbon based pigments of vegetable origin;
 - it is possible to determine the group to which the organic compounds belong (lipid, protein or polysaccharide), but not the specific compound (e.g. linseed oil, nut oil, etc.);
 - the compounds present in traces or whose signal is covered by other substances present in relevant quantities are not identified.
- micro-Raman spectroscopy using a <u>Renishaw Raman Invia</u> spectrometer interfaced to a Leica DMLM microscope (obj. 5x, 20x, 50x). Exciting source: Ar+ laser (514.5 nm). The system is

equipped with filters to eliminate excitating monochromatic radiation (edge filters), monochromators (1800 lines/mm, 1200 lines/mm), CCD detector. Operating conditions: numbers of accumulations 4, accumulation time 15 s, P_{out} 1.5 mW (5%), spectral range: 685-1585 cm⁻¹ (static mode);

- scanning electron microscopy (SEM) coupled to energy dispersive chemical elemental analysis (EDS), aimed at determining the penetration of the tested consolidation products. The observations were carried out with a Philips XL30 microscope, under vacuum (100 Pa), coupled to a Brucker EDS spectrometer. The parameters used were: Voltage: 25 kV, Filament current (W): 100 μA, Acquisition time: 30s. The images attached to this report were obtained in SEM-BSE mode (secondary electrons). Sample 43 was metallised with gold;
- X-Rays fluorescence spectroscopy (XRF): this analysis provides the elemental composition of the paint layer. It is performed on the sample using a Bruker S1 Titan 800 device composed of an X-ray generator with an air-cooled Rhodium anode and a silicon detector (SDD) with Peltier cooling; the instrument allows the detection of elements from Magnesium (Z=12) to Uranium (Z=92). The device consists of a rhodium (Rh) anode X-ray tube, 6-50 kV, which provides an X-ray beam with a diameter of approximately 5 mm, and a CubeTM SDD detector with associated electronics. A microcamera to visualise the positioning of the incident beam on the sample is also included. The irradiation conditions were 15 kV, 45 µA with an acquisition time of 60 seconds. Límits of the technique:
 - o elements with atomic numbers lower than Magnesium are not revealed (Z≤12), because they have very low fluorescence energies; therefore, it is not possible to identify all organic compounds (e.g. carbon blacks, lakes, indigo);
 - results obtained are purely qualitative because there are no valid reference standards to perform quantitative analyses on paint materials;
 - it is not possible to discriminate between the different paint layers, because of the penetration capacity of X-rays; the results obtained often refer to a thickness greater than that of the superficial paint layer;
 - it is not possible to directly determine the compounds to which the revealed chemical elements belong; these are identified interpreting possible associations and taking into account the colour of the sample or the colour of the surface being analysed.

REMARKS:

Results are reported in detail in the attached analytical sheets and they only refer to the samples examined.

The description of the layers starts from the outermost one.

The thicknesses and the micrometric determinations are expressed in millimetres or in microns (μ m, 1 μ m = 0.001 mm).

It should be noted that the colours of the paint layers reproduced in the microphotographs may differ from those perceived by the direct observation of the painted surfaces due to the color of their components (binders, pigments, mineral fillers) under the microscope.

4. LIST OF ANALYSIS

	Type of analysis								
Code	Peel.	Raman	SEM-EDS	XRF	ST	MO-RL	HT	MO-TL	FT-IR
UT	Х	Х	Х			Х			
Am-Ox	Х	Х	Х			Х			
Am-Ph	Х	Х	Х			Х			
A1					Х				
A2					Х	Х	Х		
A3					Х				
A4					Х	Х	Х		
A5					Х	Х	Х		
31				Х	Х	Х	Х		
32				Х	Х	Х	Х		Х
33					Х	Х	Х		
34									Х
35				Х	Х	Х	Х		Х
36					Х	Х	Х		
38				Х	Х	Х	Х		Х
39				Х	Х	Х	Х		
40								Х	
41					Х	Х	Х		Х
42					Х	Х	Х		
43			Х		Х	Х	Х		Х
44					Х	Х	Х		Х
45				Х	Х	Х	Х		Х
46				Х	Х	Х	Х		Х
48					Х	Х	Х		Х
M1					Х			Х	
M2					Х			Х	
M3					Х			Х	
M4					Х			Х	
M5					Х			Х	
M6					Х			Х	
M7					Х			Х	
M8					Х			Х	
total	3	3	4	7	27	20	17	9	10

Legend:

Peel:	peeling test
Raman:	micro-Raman

XR

MO-RL: optical microscopy on cross-sections HT: histochemical test MO-TL: optical microscopy on

XRF: X-Ray Fluorescence **FT-IR:** infrared spectroscopy

SEM-EDS:scanning elecron microscopyHT:ST:stereoscopic microscopyMO-T

thin sections

5. RESULTS

Based on the analytical results, the following can be established:

5.1. Consolidation treatments of the plaster

The efficacy of two consolidation treatments, respectively with *Di-Ammonium Phosphate (DAP)* and with *Ammonium Oxalate (Am-Ox)*, was evaluated by means of on-site peeling tests (Scotch Tape tests) and by means of molecular (Raman) and elemental (SEM-EDS) laboratory chemical analyses; the latter were conducted on plaster samples with a maximum thickness of 4 mm approximately.

The peeling tests, which allow an evaluation of the degree of superficial cohesion of the plaster, gave satisfactory results for both treatments; in fact, the weight of the treated material adhering to the strip was almost halved compared to that of the untreated material. Results obtained, expressed as weight (W) of material pasted on the scotch tape, are listed in the following table:

Area	W (gr.)
untreated	0,044
treated with Di-Ammonium Phosphate	0.025
treated with Ammonium Oxalate	0.028

Laboratory analyses, aimed to assess the distribution of the newly-formed compounds (calcium phosphates and calcium oxalates respectively) formed after the application of the products, yielded the following results:

- the untreated plaster is free of oxalates and phosphates, but contains gypsum, presumably of new formation, heterogeneously distributed; in some places this compound is present in traces while in others it is concentrated on the surface or within the plaster;
- the newly-formed calcium oxalate is found in the bi-hydrated form (weddellite) up to a maximum depth of 60-80 μm; the efficacy of the treatment must therefore be defined as "cortical", as already demonstrated by numerous literature data;
- regarding the presence and distribution of the newly-formed phosphates, it should be noted that the results of the micro-Raman analyses were not exhaustive; in fact, a secondary signal (1050 cm⁻¹) of two different calcium phosphates (hydroxyapatite and anhydrous calcium phosphate) was identified at all depths of the sample, but not their main signal (955-960 cm⁻¹). On the other hand, EDS analyses ascertained the presence of Phosphorus with a heterogeneous distribution; in some areas of the sample, this element is concentrated at the surface while in others it appears to be present throughout the thickness of the plaster and also associated with Magnesium.

5.2. Paint layers

On the basis of the analytical results, it is believed that the technique used in the making of painting layers is that of lime-painting, also known as <u>mezzo fresco painting</u>. Some of these layers (samples **35**, **38**, **43**, **44**) contain hydromagnesite, so it is possible that magnesium lime was used as a binder in their execution.

In addition to the composition of the binder (calcite), the executive technique was defined by the microscopic appearance of the interface between the plaster and the first paint layer, which is always quite clear, without the typical interpenetration of the *fresco* technique. The carbonatated pictorial layer, even though it englobes the pigments, appears in fact differentiated from the underlying plaster, as it was applied subsequently to it.

The lime-painting technique foresees that the pigments, thinned in lime milk, are applied on the plaster when it reaches an advanced stage of drying and superficial carbonation; at the moment of the application of the colour the support could be wet in order to favour its adhesion. Compared to the *fresco* technique, it involves a considerable saving of time, as it allows to work on much larger portions of plaster, retaining the same characteristic beauty but with less brightness of colours.

The ubiquitary presence of calcium and/or magnesium oxalates, strengthens the hypothesis that the lime binder was originally mixed with a natural organic additive, probably of lipidic nature, which is no longer identifiable as it is now almost completely mineralised.

color	sample	location	pigments	
	31	west arm, western side,	Cobalt Chromite Blue or Cobalt Blu Spectral	
	32	background	Smalt (on black background)	
	35	west arm, southern side, left register, Saint's cloak	Smalt (on gray background)	
blue	38	west arm, northern side, right register	Natural Ultramarine Blue (on gray background)	
	39 west arm, vault, background of the cross		Cobalt Chromite Blue or Cobalt Blu Spectral (on black background)	
	45	north arm, background of the vault	Artificial Ultramarine Blue	
	46	north arm, northern side, Apostle's cloak	Azurite, Smalt	
gray	A1	west arm, western side (uncleaned zone)	Carbon Black, Yellow Ochre	
whitish/ pale gray	33	west arm, western side	3 superimposed layers of Carbon Black and Yellow Ochre in differents concentrations	
	A3	west arm, western side (cleaned zone)	3 superimposed layers of Carbon Black and Yellow Ochre in differents concentrations	

A list of the pigments identified is summarised in the following table:

color	sample	location	pigments
	42	west arm, northern side, left register	lime (on Yellow Ochre)
white 43		west arm, southern side, left register	lime (on whitish background conteining scarce Carbon Black and Yellow Ochre)
areen	36	west arm, southern side, left register	Green Earth
green	44	north arm, background of the vault	Green Earth (on black background)
red	41	west arm, northern side, right register	Red Ochre
brown	48	north arm, northern side, middle Apostle's hand	Yellow Ochre, Red Ochre, Carbon Black, (Bone Black?)

Insight into the blue tone represented by the samples 31 and 39 (blue shade)

XRF analysis performed on the blue layer led to the identification of Cobalt, Chromium and traces of Zinc. The co-presence of Chromium and Zinc identifies one of the pigments with a modified chemical formula well-known from late 1960s, such as cobalt green and chromium aluminium cobalt oxide (e.g. chromium aluminium cobalt oxide greenish-blue CoO*2Al₂O₃*Cr₂O₃*ZnO) which represents a valuable temporal marker in the examination of paintings.

However, it could also be *Cobalt Chromite Blue* [Co(Al,Cr)₂O₄], a pigment currently marketed by Kremer (product code Z-C0040, colour index PB36) or *Cobalt Blu Spectral* (Co₂SiO₄*Zn₂SiO₄), according to a study by S. Pisareva, a pigment synthesized in 1956 and introduced in the soviet market as an oil painting pigment for the first time in 1961. In the latter case it is a cobalt-doped willemite mineral (Zn₂SiO₄ - zinc silicate which is normally white), in which one zinc atom is substituted by cobalt, responsible for the characteristic blue color, in order to minimize the use of toxic cobalt and the production costs.

5.3. Fibres

In addition to <u>straw</u>, the plaster on the north side of the west arm contains fibres (sample **40**) of animal origin, classified as <u>wool</u>, and others of plant origin probably attributable to <u>hemp</u>; however, the correct identification of these latter requires further analysis. Wool is obtained from the fleece of sheeps.

5.4. Decay products

Calcium (weddellite, $CaC_2O_4*2H_2O$) and/or magnesium oxalates (glunshinskite, $MgC_2O_4*2H_2O$) have been found in many paint film samples. Salts efflorescence removed from the western side of the west arm (sample **34**) are composed of potassium nitrate (KNO₃).

5.5. Products applied in previous interventions

5.5.1. Synthetic resins

Pictorial fragments collected from the west arm and characterised by a glossy appearance (samples **A2**, **A4**) present a surface film consisting of <u>acrylic resin</u>, most probably referable to a poly-ethyl acrylate. In an area that has already been cleaned with acetone (sample **A5**) this compound is found in very small quantities, demonstrating the effectiveness of this procedure.

5.5.2. Mortars

Most of the samples analysed consisted of carbonated aerial lime and pozzolan, an aggregate of pyroclastic volcanic origin that gives the mortar a hydraulic character and mechanical strengths superior to those of common aerial mortars.

Two gypsum mortars without aggregate were also recognised.

The compositional and textural features of the restoration mortars, obtained from the petrographic examination, are summarised in the following table:

sample code	sampling zone	Binder (B)	Aggregate (A)	grain size (mm)	B:A ratio (by volume)
M1	west arm	gypsum and anidride	_	-	-
M6	west arm	gypsum		-	
M2 M3	west arm	air-hardening lime	65% pozzolan 35%fluvial sand	0.03-0.8 main 0.2-0.4	1:3
M4 outer	west arm	air-hardening	55% pozzolan 45% limestone crushed sand	0.03-0.68 main 0.125-0.25	1:3
M4 inner		lime	65% pozzolan 35%fluvial sand	0.03-0.8 main 0.2-0.4	1:3
M5 M8	west arm	air-hardening lime	pozzolan	0.03-1 main 0.15-0.35	1:3.5
Μ7	west arm	air-hardening lime	fluvial sand	0.03-1 main 0.1-0.25	1:3

November 23th, 2022

Report by Dr. Davide Melica

References

- AA.VV., 1995: La fabbrica dei colori. Pigmenti e coloranti nella pittura e nella tintoria, Il Bagatto editore;
- Arnold A., Zender K. 1988: *Decay on stony materials by salts in humid atmosphere*. Proceedings of the VI International Congress on Deterioration and Conservation of Stone. Torun;
- Ashok R. (Ed.), 1993: *Artists' pigments. A handbook of their history and characteristics*, vol. 2 National Gallery of Art, Oxford University Press, Washington, New York;
- Berrie B. H., 2007: *Artist's Pigments. A handbook of their history and characteristics*, vol. 4, National Gallery of Art, Washington, Archetype Pubblications, London;
- Derrick M., Stulik D., Landry J.M., 1999: *Infrared Spectroscopy in Conservation Science*, The Getty Conservation Institute;
- Feller R. L. (Ed.), 1986: Artists 'pigments. A handbook of their history and characteristics, vol. I National Gallery of Art, Oxford University Press, Washington, New York;
- Folk, R.L.,1965: Some aspects of recrystallization in ancient limestones. In: Pray, L.C. and Murray, R.C., Eds.: *Dolomitization and Limestone Diagenesis*, Vol. 13, Society for Sedimentary Geology, Special Publications,
- Franzoni E., Sassoni E., Graziani G., 2015: *Brushing, poultice or immersion? Role of the application technique on the performance of a novel hydroxyapatite-based consolidating treatment for limestone.* Journal of Cultural Heritage, 16 173–184;
- Gettens R. J., Stout G. L, 1966: *Painting Materials, A Short Encyclopedia.* Dover Publications, New York;
- Graziani G., Sassoni E., Franzoni E., 2015: Consolidation of porous carbonate stones by an innovative phosphate treatment: mechanical strengthening and physical-microstructural compatibility in comparison with TEOS-based treatments. Heritage Science. Research Article, Open access;
- Kadikova I., Pisareva S., Grigorieva I., Lukashova M., 2020: *Conservation of Modern Oil Paintings*. Springer;
- Lalli C., 1999: *Analisi stratigrafiche su campioni in sezioni lucide e sezioni sottili*. In OPD Restauro, n. 11, Firenze;
- Martin-Gil J., Ramos-Sanchez M. C., Martin-Gil F. J., 1999: Ancient pastes for stone protection against environmental agents. In: Studies in Conservation, 44;
- Matteini M., Moles A., 2002: La chimica nel restauro, Nardini Editore, Firenze;
- Matteini M., Rescic S., Fratini F., Botticelli G., 2011: *Ammonium phosphates as consolidating agents for carbonatic stone materials used in architecture and cultural heritage: preliminary research.* International Journal of Architectural Heritage, 5: 717–736, 2011;
- Matteini M., Colombo C., Botticelli G., Casati M., Conti C., Negrotti R., Possenti E.; Realini M., 2013: Ammonium phosphates to consolidate carbonatic stone materials: an inorganic-mineral treatment greatly promising. Built Heritage 2013 Monitoring Conservation Management;
- Meilunas, R.J., Bentsen, J.G., Steinberg, A., 1990: Analysis of aged paint binders by FTIR spectroscopy. Studies in Conservation 35;
- Newman R., 1979: Some applications of infrared spectroscopy in the examination of painting materials, JAIC vol. 19, number 1, article 6;
- Pinna, D., Galeotti, M., Mazzeo, R. (Eds.), 2009: Scientific examination for the Investigation of Paintings. A Handbook for Conservator-restorers. Centro Di, Firenze;
- Piovesan R., Mazzoli C., Maritan L., Cornale P., 2012: *Fresco and lime-paint: an experimental study and objective criteria for distinguishing between these painting techniques.* In Archaeometry 54, 4, pp. 723-736;

Pisareva S., 2005: A note on Cobalt Specral. In Studies in Conservation, 50 (3), pp.190-192;

- Rampazzi L., Corti C., 2019: Are commercial pigments reliable references for the analysis of paintings? In International Journal of Conservation Science, Alexandru Ioan Cuza University Publishing House;
- Realini M., Toniolo L., 1996: Proceedings of the International Symposium on the oxalate films in the conservation of works of art. Editeam, Bologna;
- Sassoni E., Graziani G., Franzoni E., 2015: *Repair of sugaring marble by ammonium phosphate: Comparison with ethyl silicate and ammonium oxalate and pilot application to historic artifact. In* Materials and Design 88, pp. 1145–1157, Elsevier;
- Seccaroni C., Moioli P., 2004: *Fluorescenza X, Prontuario per l'analisi XRF portatile applicata a superfici policrome*. Nardini Editore, Firenze;
- Tiano P., Pardini C. (a cura di), 2005: *Le patine: genesi, significato, conservazione.* Nardini Editore, Firenze;
- West FitzHugh, E. (Ed), 1997: *Artists' pigments. A handbook of their history and characteristics*, Vol. 3, National Gallery of Art Washington, Oxford University Press, New York, Oxford University Press.

SAMPLE SHEETS

ON-SITE EVALUATION OF THE EFFECTIVENESS OF CONSOLIDATION TREATMENTS BY MEANS OF PEELING TESTS

Results obtained in the Untreated Area					
Code	W _i (gr)	W _f (gr)	ΔW (gr)		
1	0,772	0,783	0,011		
2	0,760	0,789	0,029		
3	0,775	0,786	0,011		
4	0,774	0,777	0,003		
5	0,779	0,826	0,047		
6	0,800	0,805	0,006		
7	0,785	0,811	0,026		
22	0,792	0,862	0,070		
23	0,800	0,909	0,110		
24	0,781	0,817	0,036		
25	0,787	0,800	0,014		
26	0,927	0,983	0,056		
27	0,948	0,961	0,012		
28	0,954	1,012	0,058		
		average	0,044 gr		

Results obtained in the area treated with Ammonium Phosphate				
Code	W _i (gr)	W _f (gr)	ΔW (gr)	
8	0,805	0,822	0,017	
9	0,809	0,822	0,013	
10	0,806	0,842	0,037	
11	0,806	0,830	0,024	
12	0,790	0,804	0,015	
13	0,787	0,798	0,011	
14	0,804	0,813	0,009	
29	0,951	0,952	0,001	
30	0,938	0,951	0,014	
31	0,941	0,950	0,009	
32	0,954	0,974	0,020	
33	0,955	0,972	0,018	
34	0,945	0,946	0,001	
35	0,919	0,952	0,033	
average 0.025 gr				

Results obtained in the area treated with Ammonium Oxalate			
Code	W _i (gr)	W _f (gr)	ΔW (gr)
15	0,782	0,785	0,004
16	0,802	0,806	0,005
17	0,806	0,824	0,018
18	0,800	0,813	0,013
19	0,796	0,807	0,012
20	0,774	0,820	0,046
21	0,792	0,807	0,015
36	0,946	0,976	0,030
37	0,962	0,987	0,025
38	0,930	0,972	0,042
39	0,942	0,965	0,023
40	0,923	0,932	0,008
41	0,922	0,947	0,025
42	0,970	0,980	0,010
		average	0.028 gr

W_i= initial weight of the scotch tape;

 W_f = final weight of the scotch tape after removal from the plaster;

 $\Delta W = W_f - W_i$ = weight of the adhering material on the scotch tape.

Code	Sample type	Sampling zone	Adopted analisys
UT	fragment of untreated plaster	west arm, southern wall	OM-RL, micro-Raman

UT sampling point

sample UT: cross-section photograph (white reflected light).

The sample belongs to the outermost layer of the plaster having a maximum thickness of 5 mm; it has and has weak cohesion.

Micro-Raman analysis

Analyses were performed along 3 different line-scans, with different steps, oriented orthogonally to the sample surface. The signals at 1085 cm-1 and 1003 cm-1 belong to calcite and gypsum, respectively.

Line-scan n.3

SEM-EDS analysis

Chemical analyses and maps reveal traces of gypsum (Ca, S) in the thickness of the layer and exclude the presence of phosphorus (P).

distribution maps of chemical elements

Code	Sample type	Sampling zone	Adopted analisys
Am-Ox	fragment of plaster treated with Ammonium Oxalate	west arm, southern wall	OM-RL, micro-Raman

AmOx sampling point

sample Am-Ox: cross-section photograph (white reflected light).

The sample belongs to the outermost layer of the plaster having a maximum thickness of 4 mm and a medium cohesion.

Micro-Raman analysis

Analyses were carried out along 5 different line-scans, with different steps, oriented orthogonally to the sample surface; the compounds identified are calcite (1085 cm⁻¹), gypsum (1000 cm⁻¹) and calcium oxalate (1477 cm⁻¹) in the form of weddellite (CaC₂O₄*2H₂O); the latter is present, if only with a weak signal, up to a maximum depth of 60-80 μ m.

Line-scan n. 1

Dr. Geol. Davide Melica - Consulenza e Diagnostica per il Restauro e la Conservazione

Raman spectra at different dephts

Line-scan n. 5

SEM-EDS analysis

Elemental chemical analyses and maps confirm the presence of gypsum (Ca, S) and the absence of phosphates (P).

DI/	AGNOSTICA
PER	IL RESTAURO
LA	CONSERVAZIONE

Code	Sample type	Sampling zone	Adopted analisys
Am-Ph	fragment of plaster treated with Di-Ammonium Phosphate (DAP)	west arm, southern wall	OM-RL, micro-Raman

Am-Ph sampling point

sample Am-Ph: cross-section photograph (white reflected light).

The sample belongs to the outermost layer of the plaster, having a maximum thickness of 3.7 mm and a medium cohesion.

Micro-Raman analysis

Analyses were carried out along 3 different line-scans, with different steps, oriented orthogonally to the surface of the sample; in addition to the calcite (1085 cm⁻¹) and gypsum (1000 cm⁻¹) signals, a band at 1050 cm⁻¹ was visible at all depths, which can probably be attributed to phosphates; however, their most intense signal located around 950 cm⁻¹ is missing. The 1050 cm⁻¹ medium intensity signal appears in the Raman spectra of hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂] and anhydrous calcium phosphate $[Ca(HPO_4)_2]$ reported in the literature.

Line-scan n. 1

Raman spectra at different dephts

Dr. Geol. Davide Melica - Consulenza e Diagnostica per il Restauro e la Conservazione

Dr. Geol. Davide Melica - Consulenza e Diagnostica per il Restauro e la Conservazione

Dr. Geol. Davide Melica - Consulenza e Diagnostica per il Restauro e la Conservazione

SEM-EDS analisys

In addition to gypsum, elemental chemical analyses reveal the presence of heterogeneously distributed phosphorus; in some areas of the sample, this element is concentrated on the surface while in others it appears to be distributed throughout the thickness of the sample and also associated with magnesium.

BSE image of the sample (area 1, part a)

BSE image of the sample (area 1, part b)

Element	Weight%	Weight%	Atomic%
		Sigma	
СK	40.76	0.26	52.57
O K	40.65	0.22	39.36
Na K	0.33	0.02	0.22
Mg K	0.70	0.02	0.45
Al K	0.25	0.01	0.15
Si K	1.30	0.02	0.72
РК	0.14	0.01	0.07
S K	3.54	0.03	1.71
КК	0.58	0.01	0.23
Ca K	11.58	0.07	4.47
Fe K	0.16	0.02	0.04

Totals 100.00

concentrations of chemical elements (area 1a)

Element	Weight%	Weight%	Atomic%
		Sigilia	
CK	33.55	0.28	45.20
O K	44.29	0.23	44.80
Na K	0.27	0.02	0.19
Mg K	0.56	0.02	0.37
Al K	0.19	0.01	0.11
Si K	1.33	0.02	0.76
ΡK	0.03	0.01	0.01
S K	5.59	0.04	2.82
ΚK	0.60	0.01	0.25
Ca K	13.42	0.07	5.42
Fe K	0.17	0.02	0.05

Totals 100.00

concentrations of chemical elements (area 1b)

EDS spectrum (area 1, part b)

Dr. Geol. Davide Melica - Consulenza e Diagnostica per il Restauro e la Conservazione

distribution maps of chemical elements (area **1**, part **b**)

Dr. Geol. Davide Melica – Consulenza e Diagnostica per il Restauro e la Conservazione

BSE image of the sample (area 2, part a)

BSE image of the sample (area 2, part b)

Element	Weight%	Weight%	Atomic%
		Sigma	
CK	45.89	0.20	57.86
O K	37.03	0.18	35.06
Na K	0.16	0.02	0.11
Mg K	1.00	0.02	0.63
Al K	0.16	0.01	0.09
Si K	0.94	0.01	0.51
РК	0.56	0.01	0.27
S K	1.09	0.01	0.52
ΚK	0.46	0.01	0.18
Ca K	12.46	0.06	4.71
Fe K	0.23	0.02	0.06

Totals 100.00

concentrations of chemical elements (area 2a)

Element	Weight%	Weight% Sigma	Atomic%
СК	29.93	0.30	41.40
O K	45.51	0.24	47.27
Na K	0.39	0.02	0.28
Mg K	1.01	0.02	0.69
Al K	0.19	0.01	0.11
Si K	1 37	0.02	0.81
РК	0.25	0.02	0.14
S K	4.41	0.04	2.28
КК	0.74	0.02	0.31
Ca K	16.08	0.09	6.67
Fe K	0.13	0.02	0.04

Totals 100.00

concentrations of chemical elements (area 2b)

EDS spectrum of area **2**, part **b**

distribution maps of chemical elements (area 2b)

K Ka1

S Ka1

Dr. Geol. Davide Melica - Consulenza e Diagnostica per il Restauro e la Conservazione

Ca Ka1

Fe Ka1

Code	Sample type	Sampling zone	Adopted analisys
A1	gray pictorial fragment	west arm, western side (uncleaned zone)	ST, OM-RL, HT

sample A1: sampling point.

sample A1: photograph under the stereomicroscope.

Optical microscopy on cross section

sample A1: cross-section photograph with indication of the layers (white reflected light).

sample A1: detail (white reflected light).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
b	gray		200-230	lime based paint layer containing Carbon Black and scarce Yellow Ochre
а	white		-	plaster

Code	Sample type	Sampling zone	Adopted analisys
A2	pale-yellow pictorial fragment with shiny appearance	west arm, northern side	ST, FT-IR

sample A2: sampling point.

sample A2: photograph under the stereomicroscope.

layer	compounds	signals (cm ⁻¹)	estimated quantity
	organic compound (acrilic resin)	2984, 2952, 2930, 2853, 1728, 1258, 1234, 1172, 1158, 1098, 1024, 757	+++
surface	calcite	1793, 1400, 872, 711	++++
	Ca-oxalates	1628, 1322, 781, 516	+

sample A2: FT-IR spectrum of the surface.

Code	Sample type	Sampling zone	Adopted analisys
A3	gray pictorial fragment	west arm, western side (cleaned zone)	ST, OM-RL, HT

sample A3: sampling point.

sample A3: photograph under the stereomicroscope.

Optical microscopy on cross section

sample A3: cross-section photograph with indication of the layers (white reflected light).

sample A3: detail (white reflected light).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
с	gray		~25	thin lime based paint layer pigmented by scarce Carbon Black and traces of Yellow Ochre
b	yellowish gray		90-100	paint layer containing Carbon Black and Yellow Ochre
а	white		-	plaster

Code	Sample type	Sampling zone	Adopted analisys
A4	red pictorial fragment with shiny appearance	west arm, northern side (uncleaned zone)	ST, FT-IR

sample A4: sampling point.

sample A4: photograph under the stereomicroscope.

layer	compounds	signals (cm ⁻¹)	estimated quantity
	organic compound (acrilic resin)	2981, 2950, 1726, 1256, 1234, 1175, 1155, 1097, 1026, 758	++++
	calcite	2513, 1795, 1437, 874, 710	++++
surface	natural earths (ochres)	3694, 3651, 3620, 1026, 1006, 940, 913, 536, 466, 431	+++
	Ca-oxalates	3486, 3435, 3335, 3263, 3061, 1622, 1316, 778, 667, 516	++

sample A4: FT-IR spectrum of the surface.

Code	Sample type	Sampling zone	Adopted analisys
A5	red pictorial fragment	west arm, northern side (cleaned zone)	ST, FT-IR

sample A5: sampling point.

sample A5: photograph under the stereomicroscope.

layer	compounds signals (cm ⁻¹)		estimated quantity
	organic compound (acrilic resin)	2984, 2952, 1730	+
	calcite	1796, 1430, 874, 710	++++
surface	natural earths (ochres)	3694, 3649, 3620, 1026, 1004, 936, 912, 532, 465, 428	++++
	Ca-oxalates	3477, 3420, 3332, 3252, 3055, 1619, 1318, 778, 667, 519	++++
	quartz	1162, 1084, 798, 778, 693, 512	++

sample A5: FT-IR spectrum of the surface.

Code	Sample type	Sample type Sampling zone	
31	blue pictorial fragment	west arm, western side, background	ST, XRF, OM-RL, HT

sample 31: sampling point.

sample 31: photograph under the stereomicroscope.

XRF measurements

Chemical Elements					noosible compounds
layer	main	secondary	minority	in traces	possible compounds
blue	Са	-	K Cr Fe Co	Al Si S Zn	calcite, cobalt pigment containing Cr and Zn

sample 31: 15 kV XRF spectrum of the blue layer.

Optical microscopy on cross section

sample 31: cross-section photograph (white reflected light).

sample 31: detail with indication of the layers (white reflected light).

sample 31: detail (reflected light, on the left SWB filter, on the right UV filter).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
b	blue		10-12	paint layer of a blue modern pigment (probably Cobalt Blue with modified chemical composition)
а	white		-	plaster

Code	Sample type	Sampling zone	Adopted analisys
32	electric blue pictorial	west arm, western side,	ST, XRF, OM-RL, HT,
	fragment	background	FT-IR

sample 32: sampling point.

sample 32: photograph under the stereomicroscope.

XRF measurements

layer		Chemical	naccible compounds		
	main	secondary	minority	in traces	possible compounds
blue	Са		Si S Fe Co	K Ti Mn Ni Cu As	calcite, Smalt

sample 32: 15 kV XRF spectrum of the blue layer.

Optical microscopy on cross section

sample 32: cross-section photograph (white reflected light).

sample 32: detail with indication of the layers (white reflected light).

sample 32: detail (reflected light, on the left SWB filter, on the right UV filter).

layer	compounds	signals (cm ⁻¹)	estimated quantity
	Smalt	1013, 780, 455	++++
	calcite	1447	+
с	Ca-oxalates	1641, 1323, 780	++
	Mg-oxalates	3392, 1373	traces
	organic compound	1730	traces

sample 32: FT-IR spectrum of the layer (c).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
С	blue		20-120	paint layer containing Smalt and oxalates; a scarce quantity of calcite and traces of an organic compound were also recognized
b	black		20-50	lime-based paint layer of Carbon Black
а	white		-	plaster

Code	Sample type	Sampling zone	Adopted analisys
33	gray pictorial fragment	west arm, western side	ST, OM-RL, HT

sample 33: sampling point.

sample 33: photograph under the stereomicroscope.

Optical microscopy on cross section

sample 33: cross-section photograph (white reflected light).

sample 33: detail with indication of the layers (white reflected light).

sample 33: detail (reflected light, on the left SWB filter, on the right UV filter).

Dr. Geol. Davide Melica – Consulenza e Diagnostica per il Restauro e la Conservazione

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
е	black		-	depositional carbon particles
d	pale-grey		~30	lime-based thin layer containing scarce Carbon Black
с	pale-grey		75-100	lime-based paint layer slightly pigmented by Carbon Black and Yellow Ochre
b	pale yellow		70-100	lime-based paint layer containing Yellow Ochre, Carbon Black and few particles of Red Ochre
а	white		-	plaster

Code	Sample type	Sampling zone	Adopted analisys
34	salt efflorescences	west arm, western side	FT-IR

sample 34: sampling point.

layer	compounds	signals (cm ⁻¹)	estimated quantity
-	potassium nitrate (KNO ₃)	1762, 1367, 824	

sample 34: FT-IR spectrum.

Code	Sample type	Sampling zone	Adopted analisys
35	blue pictorial fragment	west arm, southern side,	ST, XRF, OM-RL, HT,
		left register, Saint's cloak	FT-IR

sample 35: sampling point.

sample 35: photograph under the stereomicroscope.

XRF measurements

lovor		Chemical	noocible compoundo		
layer	main	secondary	minority	in traces	
blue	Са	Со	Si S K Fe Ni	Mg Al Mn Cu As	calcite, Smalt

sample 35: 15 kV XRF spectrum of the blue layer.

Optical microscopy on cross section

sample 35: cross-section photograph (white reflected light).

sample 35: detail with indication of the layers (white reflected light).

sample 35: detail (reflected light, on the left SWB filter, on the right UV filter).

layer	compounds	signals (cm ⁻¹)	estimated quantity
	calcite	1795, 1407, 871, 711	+++
	Ca-oxalates 1638, 1320		+++
с	Mg-oxalates 3392, 3369, 1662, 1372, 1320, 827		+++
	Smalt	1086, 997, 455	++
	organic compound	2984, 2952, 1726	+
	calcite	1796, 1413, 874, 711	++++
b	hydromagnesite	3646, 3503, 3395, 1645, 1474, 852, 791	+++
	organic compound	2987, 1732, 1158	+

sample 35: FT-IR spectrum of the layer (b).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
С	blue	-	55-85	lime-based paint layer containing Smalt, oxalates and traces of a lipidic compound
b	grey	-	35-40	lime-based paint layer pigmented by Carbon Black and scarce Yellow Ochre; it also contains hydromagnesite and a lipidic compound
а	white	-	-	plaster

Code	Sample type	Sampling zone	Adopted analisys
36	green pictorial fragment	west arm, southern side, left register	ST, OM-RL, HT

sample 36: sampling point.

sample 36: photograph under the stereomicroscope.

Optical microscopy on cross section

sample 36: cross-section photograph (white reflected light).

sample 36: detail with indication of the layers (white reflected light).

sample 36: detail (reflected light, on the left SWB filter, on the right UV filter).

Dr. Geol. Davide Melica – Consulenza e Diagnostica per il Restauro e la Conservazione

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
с	pale green		20-25	lime-based paint layer containing Green Earth
b	dark green		45-71	lime-based paint layer pigmented by Green Earth; few particles of Yellow Ochre and Carbon Black are also present
а	white		-	plaster

Code	Sample type	Sampling zone	Adopted analisys
38	blue pictorial fragment	west arm, northern side, right register	ST, XRF, OM-RL, HT FT-IR

sample 38: sampling point.

sample 38: photograph under the stereomicroscope.

XRF measurements

layer		Chemical			
	main	secondary	minority	in traces	possible compounds
blue	Са	S	Fe	Al Si K Ni Pb	calcite, gypsum, ochre

sample 38: 15 kV XRF spectrum of the blue layer.

Optical microscopy on cross section

sample 38: cross-section photograph (white reflected light).

sample 38: detail with indication of the layers (white reflected light).

sample 38: detail (reflected light, on the left SWB filter, on the right UV filter).

layer	compounds	signals (cm ⁻¹)	estimated quantity
	calcite	1796, 1412, 871, 711	+++
d	gypsum	3495, 3243, 1679, 1619, 1103, 1007, 667, 597, 454	+++
	Mg-oxalates	3395, 1665, 1372, 1325, 827	++
	Ca-oxalates	1646, 1325	+
	sulphates?	985	+
b	hydromagnesite	3649, 3506, 3423, 1644, 1469, 1413, 1117, 854, 794, 589, 432	+++
	calcite	1795, 1413, 874, 711	++++
	dolomite	1822, 728	+

sample 38: FT-IR spectrum of the layer (d).

sample 38: FT-IR spectrum of the layer (b).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
d	pink		0-30	residue of a patina composed by calcite, gypsum, oxalates and traces of Red Ochre finely grained
С	blue		15-30	deteriorated paint layer of Natural Ultramarine Blue (lapis lazuli)
b	black		12-20	irregular lime-based paint layer of Carbon Black also containing hidromagnesite and dolomite
а	white		-	plaster

Code	Sample type	Sampling zone	Adopted analisys
39	blue pictorial fragment	western arm, vault, background of the cross	ST, XRF, OM-RL, HT

sample 39: sampling point.

sample 39: photograph under the stereomicroscope.

XRF measurements

		Chemical	naccible compounds		
layer	main	main secondary n		in traces	
blue	Са	Fe	K Cr Co	Mg Al Si S Ti Ni Zn	calcite, cobalt pigment containing also Cr and Zn

sample 39: 15 kV XRF spectrum of the blue layer.

Optical microscopy on cross section

sample 39: cross-section photograph (white reflected light).

sample 39: detail with indication of the layers (white reflected light).

sample 39: detail (reflected light, on the left SWB filter, on the right UV filter).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
с	blue	-	0-15	paint layer of a blue modern pigment (probably Cobalt Blue with modified chemical composition)
b	black	-	0-10	thin layer of a very fine-grained black pigment
а	white	-	-	plaster

Results of the histochemical tests: negative

Dr. Geol. Davide Melica – Consulenza e Diagnostica per il Restauro e la Conservazione

Code	Sample type	Sampling zone	Adopted analisys
40	fibres	west arm, northern side, right register	OM-TL

sample 40: sampling point.

Optical microscopy with transmitted light

The sample consists of two types of fibres: wool and probable hemp.

Under the microscope <u>wool fibre</u> is surrounded by a cuticle of flattened cells that look like overlapping scales. In addition, the intact fibre has a root with a larger diameter at its base.

<u>Hemp fibre</u> is cylindrical with some irregularities in form of transversal joints and longitudinal fractures; it looks like similar to flax's one, both in dimensions and general appearance, but joints are usually less abundant.

sample 40: wool fibre - microphotographs of the central zone (transmitted light, X polars on the left, // polars on the right).

sample 40: wool fibre - microphotographs of root (on the left) and termination (on the right) (transmitted light, // polars).

sample 40 – possible hemp fibre: microphotographs (transmitted light, X polars on the left, // polars on the right).

Code	Sample type	Sampling zone	Adopted analisys
41	red pictorial fragment with shiny appearance	west arm, northern side, right register	ST, OM-RL, HT FT-IR

sample 41: sampling point.

sample 41: photograph under the stereomicroscope.

Optical microscopy on cross section

sample 41: cross-section photograph (white reflected light).

sample 41: detail with indication of the layers (white reflected light).

sample 41: detail (reflected light, on the left SWB filter, on the right UV filter).

Dr. Geol. Davide Melica – Consulenza e Diagnostica per il Restauro e la Conservazione

FT-IR spectroscopy

layer	compounds	signals (cm ⁻¹)	estimated quantity
	calcite	1795, 1412, 874, 713	++++
	Mg-oxalates	3392, 3372, 1659, 1375, 1318, 828	+++
	Ca-oxalates	1634, 1318, 780	+
b	gypsum	3495, 3243, 1621, 1140, 1103, 1004, 667, 597, 468	+++
	natural earths (ochres)	3694, 3640, 1034	++
	organic compound ?	1735	traces

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
b	red		75-100	lime-based paint layer with longitudinal fissures, pigmented by fine-grained Red Ochre; gypsum, oxalates and possible traces of an organic compound are also present
а	white		-	plaster

Results of the histochemical tests: negative

Dr. Geol. Davide Melica – Consulenza e Diagnostica per il Restauro e la Conservazione

Code	Sample type	Sampling zone	Adopted analisys
42	white pictorial fragment	west arm, northern side, left register	ST, OM-RL, HT

sample 42: sampling point.

sample 42: photograph under the stereomicroscope.

Optical microscopy on cross section

sample 42: cross-section photograph (white reflected light).

sample 42: detail with indication of the layers (white reflected light).

sample 42: detail (reflected light, on the left SWB filter, on the right UV filter).

Dr. Geol. Davide Melica – Consulenza e Diagnostica per il Restauro e la Conservazione

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
С	grey		~20	lime-based paint layer
b	yellow		10-30	lime-based paint layer containing Yellow Ochre and scarce Red Ochre
а	white		-	plaster

Results of the histochemical tests: negative

Code	Sample type	Sampling zone	Adopted analisys
43	grey pictorial fragment layer with shiny appearance	west arm, southern side, left register	ST, OM-RL, HT, FT-IR, SEM-EDS

sample 43: sampling point.

sample 43: photograph under the stereomicroscope.

Optical microscopy on cross section

sample 43: cross-section photograph with indication of the layers (white reflected light).

sample 43: detail (reflected light, on the left SWB filter, on the right UV filter).

FT-IR spectroscopy

layer	compounds	signals (cm ⁻¹)	estimated quantity
	calcite	2513, 1795, 1399, 869, 711	++++
	hydromagnesite	3389, 1642, 798, 744	+
C	brucite?	3689	++
	silicati	1070, 1002, 449	+

Scanning Electron Microscopy (SEM-EDS)

Analysis record abundant Calcium and, subordinately, Magnesium and Silicon; these data confirm the presence of calcium and magnesium carbonates and silicates.

sample 43: BSE image.

sample 43: EDS spectrum n.1

sample 43: EDS spectrum n.3

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
С	white		40-70	lime based paint layer containing silicates
b	pale grey		35-60	lime-based paint layer slightly pigmented by Carbon Black and Yellow Ochre
а	white		-	plaster

Results of the histochemical tests: negative

Code	Sample type	Sampling zone	Adopted analisys
44	black-greenish pictorial	northern arm, background	ST, OM-RL, HT,
	fragment	of the vault	FT-IR

sample 44: sampling point.

sample 44: photograph under the stereomicroscope.

Optical microscopy on cross section

sample 44: cross-section photograph (white reflected light).

sample 44: detail with indication of the layers (white reflected light).

sample 44: detail (reflected light, on the left SWB filter, on the right UV filter).

Dr. Geol. Davide Melica – Consulenza e Diagnostica per il Restauro e la Conservazione

FT-IR spectroscopy

layer	compounds	signals (cm ⁻¹)	estimated quantity
	calcite	1795, 1406, 871, 711	++++
с	Green Earth	3694, 3646, 3600, 1114, 1079, 977, 958, 679, 495, 462, 439	+
	hydromagnesite	3649, 3509, 1471, 1406, 1114, 852, 794, 744, 592	+

sample 44: FT-IR spectrum of the layer (c).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
С	green	-	20-40	lime-based paint containing Green Earth, few particles of Carbon Black and scarce hydromagnesite
b	black	-	10-20	lime-based paint layer of Carbon Black and Green Earth
а	white	-	-	plaster

Results of the histochemical tests: negative

Code	Sample type	Sampling zone	Adopted analisys
45	blue pictorial fragment	northern arm, background	ST, XRF, OM-RL, HT,
		of the vault	FT-IR

sample 45: sampling point.

sample 45: photograph under the stereomicroscope.

XRF measurements

lovor		Chemical	noocible compound		
layer	main	secondary	minority	in traces	possible compound
blue	Са		Si S K	Al Fe	calcite, Ultramarine Blue

sample 45: 15 kV XRF spectrum of the blue layer.

Optical microscopy on cross section

sample 45: cross-section photograph (white reflected light).

sample 45: detail with indication of the layers (white reflected light).

sample 45: detail (reflected light, on the left SWB filter, on the right UV filter).

FT-IR spectroscopy

layer	compounds	signals (cm ⁻¹)	estimated quantity
	calcite	1796, 1410, 871, 710	++++
	Ca-oxalates	1631, 1322, 777, 661, 519	++
C	Ultramarine Blue	1101, 993, 445	++
	organic compound	2961, 2930, 2853, 1743	traces
c Ultramarine Blue blue pigment		1113, 963, 801, 697, 657, 580, 542, 442	

sample 45: FT-IR spectrum of a blue pigment's grain (layer c).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
С	blue		25-60	lime-based paint layer containing Artificial Ultramarine Blue; Ca-oxalates and traces of an organic compound are also present
b	black		15-35	lime-based paint layer of Carbon Black with few particles of Red Ochre
а	white		-	plaster

Results of the histochemical tests: negative

Code	Sample type	Sampling zone	Adopted analisys
46	blue pictorial fragment	north arm, northern side, Apostle's cloak on the right side	ST, XRF, OM-RL, HT, FT-IR

sample 46: sampling point.

sample 46: photograph under the stereomicroscope.

XRF measurements

		Chemical	noosible compounds		
layer	main	secondary	minority	in traces	possible compounds
blue	Са	Cu	Si S Co	K Mn Ni As Pb	calcite, Azurite, Smalt

sample 46: 15 kV XRF spectrum of the blue layer.

Optical microscopy on cross section

sample 46: cross-section photograph with indication of the layers (white reflected light).

sample 46: detail (reflected light, on the left SWB filter, on the right UV filter).

sample 46: detail (white reflected light).

FT-IR spectroscopy

layer	compounds	signals (cm ⁻¹)	estimated quantity
	Azurite	3420, 3360, 1486, 1460, 1406, 1084, 949, 831, 811, 770, 747, 483, 448	++++
с с С	Smalt	1014, 782, 448	++
	calcite	1406, 875	++
	Ca-oxalates 1634, 1320		++
	organic compound	1736	traces
	calcite	1796, 1412, 872, 710	++++
b	Ca-oxalates	3477, 3426, 3332, 3263, 3052, 1615, 1313, 780, 660, 597, 512	+++
~	natural earths (ochres)	3689, 3643, 3597, 1022	+
	organic compound	2938, 2967, 1733-1705, 1244	traces

Dr. Geol. Davide Melica – Consulenza e Diagnostica per il Restauro e la Conservazione

sample 46: FT-IR spectrum of the layer (c).

sample 46: FT-IR spectrum of the layer (b).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
с	blue/green		0-130	paint layer containing Azurite and Smalt; some Azurite particles are turned green; Ca-oxalates and traces of an organic compound are also detected
b	gray		35-65	lime-based paint layer rich in Ca-oxalates and slightly pigmented by few particles of Carbon Black and Yellow Ochre
а	white		-	plaster

Results of the histochemical tests: negative

Code	Sample type	Sampling zone	Adopted analisys
48	brown pictorial fragment	west arm, northern side, middle Apostle's hand	ST, XRF, OM-RL, HT, FT-IR

sample 48: sampling point.

sample 48: photograph under the stereomicroscope.

XRF measurements

layer		Chemical	noocible compounds		
	main	secondary	minority	in traces	possible compounds
brown	Са	Fe	Si S K	Al Ti	calcite, ochres

sample 48: 15 kV XRF spectrum of the brown layer.

Optical microscopy on cross section

sample 48: cross-section photograph (white reflected light).

sample 48: reflected light (on the left SWB filter, on the right UV filter).

sample 48: detail (reflected light).

FT-IR spectroscopy

layer	compounds	signals (cm ⁻¹)	estimated quantity
	calcite	2510, 1795, 1409, 872, 711	++++
	Ca-oxalates	1634, 1322, 782	++
b	natural earths (ochres)	3697, 3646, 3623, 1026, 1004, 913, 529, 465, 438	++
	quartz	1165, 1081, 798, 782,	+
	phosphates?	958	+

sample 48: FT-IR spectrum of the layer (b).

Description of the stratigraphic sequence:

layer	color	UV fluo.	thickness (μm)	description and composition
b	brown		20-60	lime-based paint layer containing Yellow Ochre, Red Ochre, Carbon Black and Bone Black?
а	white		-	plaster

Results of the histochemical tests: negative

Code	Sample type	Sampling zone	Adopted analisys
M1	fragments of white	west arm, southern side	
M6	restoration mortar	vault	ST, OM-TL

sample M1: sampling point.

sample M6: sampling point.

sample M1

sample M6

Optical microscopy on thin section

Sample **M1** consists entirely of a gypsum groundmass (CaSO₄*2H₂O) with a micritic texture, recognisable by its grey or white 1st-order interference colour. Numerous small anhydride inclusions (CaSO₄), characterised by high birefringence and iridescent appearance, are dispersed within it; their size ranges from 50 to 100 μ m. No aggregates are observed, while some pores of primary origin and subcircular shape are clearly visible, resulting in low porosity. A 120-150 μ m thick layer of organic nature is present on the surface.

Mortar **M6** also consists of gypsum without aggregate but, unlike sample M1, does not contain anhydride. Porosity is low and is determined by elongated vacuoles.

sample M1: thin-section photograph (transmitted light, X polars).

sample M6: thin-section photograph (transmitted light, X polars).

Dr. Geol. Davide Melica - Consulenza e Diagnostica per il Restauro e la Conservazione

Code	Sample type	Sampling zone	Adopted analisys
M2	fragments of reddish restoration mortar	west arm, southern side	
M3		west arm, northern side	ST, OM-TL

sample M2: sampling point.

sample M3: sampling point.

Stereoscopic microscopy

sample M2

Optical microscopy on thin section

Samples M2, M3

Samples have the same compositional and textural characteristics.

MICR	MICROSCOPIC FEATURES OF THE BINDER			
1	Mineralogic composition	calcium carbonate (CaCO $_3$) originated from the carbonation process of an air-hardening lime		
2	Structure	homogeneous		
3	Texture	micritic (dimension of calcite crystals 4-10 μ m)		
4	Interactions with the aggregate	absent		

5	Porosity		
5.1.	o tipology	voids	
5.2.	o ubication	intergranular and intragranular	
5.3.	o % (by volume)	very high (~35%)	
5.4.	o origin	primary (voids naturally present within the aggregate or caused by shrinkage of the binder during setting and hardening)	
MICR	OSCOPIC FEATURES O	F THE AGGREGATE	
1	Size		
1.1.	 dimensional range (estimated values) 	The grain size varies from coarse silt to coarse sand (0.03-0.8 mm) be mainly falls in the medium sand and fine sand classes (0.2-0.4 mm spreads in the different fractions as listed below:	ut it); it
		granulometric classes %	
		coarse sand (0.5-1 mm) 10	
		medium sand (0.25-0.5 mm) 30	
		fine sand (0.125-0.25 mm) 30	
		very fine sand (0.062-0.125 mm) 15	
		coarse silt (0.031-0.062 mm) 15	
12	 sorting 	low	
2	Shape (rounding and sphericity)	rounding: angular; sphericity: low	
3	Surface morphology	faceted	
4	Orientation	absent	
5	Distribution	homogeneous	
6	Composition (% by volume) (estimated values)	The aggregate have a silicatic and carbonatic composition; in ord decreasing abundance it spread as listed below:	
		rocks or mineral types %	
		• pyroclastic volcanic rock fragments (red pozzolan 65 containing piroxenes and plagioclases fenocristals and vulcanic glass)	
		sedimentary rocks fragments identified as micritic, 20 microsapritic and sparitic limestones	
		metamorphic rock fragments classified as schists, 10 quartzites and argillites	
		effusive volcanic rocks fragments (lavas) 5	
7	Admixtures	-	
8	Binder/Aggregate Ratio (by volume)	~1:3	

	CONCLUSIONS		
1 Mixture characterization It is a mortar consist composed of approxin a carbonate-silicate s has an average size i of 0.8 mm. The binder		Mixture characterization	It is a mortar consisting of air-hardening lime mixed with an aggregate composed of approximately 65% of red pozzolan and 35% by volume of a carbonate-silicate sand, presumably of fluvial origin. The aggregate has an average size between 0.2 and 0.4 mm and a maximum diameter of 0.8 mm. The binder/aggregate ratio is around 1:3 by volume.
	2	Secondary processes and decay products	No neoformation phases attributable to degradation processes are observed.

A layer of carbonated aerial lime is observed on the surface of sample M3.

sample M2: thin-section photograph (transmitted light, X polars).

sample M3: thin-section photograph (transmitted light, X polars).

Code	Sample type	Sampling zone	Adopted analisys	
M4	fragment of reddish restoration mortar	west arm, northern side	ST, OM-TL	

sample M4: sampling point.

Stereoscopic microscopy

sample M4

The sample consists of two layers, an outer whitish-pink layer and an inner red-brown layer; both are approximately 4 mm thick.

Optical microscopy on thin section

Outer layer

MICROSCOPIC FEATURES OF THE BINDER			
Mineralogic composition	calcium carbonate (CaCO $_3$) originated from the carbonation pran air-hardening lime	rocess of	
Structure	lumpy		
Texture	micritic (dimension of calcite crystals 4-10 µm)		
Interactions with the aggregate	absent		
Porosity			
o tipology	voids and microcracks		
o ubication	intergranular and intragranular		
o % (by volume)	very high (~35%)		
o origin	primary (voids naturally present within the aggregate or cashrinkage of the binder during setting and hardening)	aused by	
MICROSCOPIC FEATURES OF THE AGGREGATE			
Size			
Size o dimensional range (estimated values)	The grain size varies from coarse silt to coarse sand (0.03-0.68 it mainly falls in the fine sand class (0.125-0.25 mm); it sprea different fractions as listed below:	mm) but ds in the	
Size o dimensional range (estimated values)	The grain size varies from coarse silt to coarse sand (0.03-0.68 it mainly falls in the fine sand class (0.125-0.25 mm); it sprea different fractions as listed below: granulometric classes	6 mm) but ds in the %	
Size o dimensional range (estimated values)	The grain size varies from coarse silt to coarse sand (0.03-0.68 it mainly falls in the fine sand class (0.125-0.25 mm); it sprea different fractions as listed below: granulometric classes coarse sand (0.5-1 mm)	mm) but ds in the % 10	
Size o dimensional range (estimated values)	The grain size varies from coarse silt to coarse sand (0.03-0.68 it mainly falls in the fine sand class (0.125-0.25 mm); it sprea different fractions as listed below: granulometric classes coarse sand (0.5-1 mm) medium sand (0.25-0.5 mm)	mm) but ds in the % 10 20	
Size o dimensional range (estimated values)	The grain size varies from coarse silt to coarse sand (0.03-0.68 it mainly falls in the fine sand class (0.125-0.25 mm); it sprea different fractions as listed below: granulometric classes coarse sand (0.5-1 mm) medium sand (0.25-0.5 mm) fine sand (0.125-0.25 mm)	8 mm) but ds in the % 10 20 35	
Size o dimensional range (estimated values)	The grain size varies from coarse silt to coarse sand (0.03-0.68it mainly falls in the fine sand class (0.125-0.25 mm); it spreadifferent fractions as listed below:granulometric classescoarse sand (0.5-1 mm)medium sand (0.25-0.5 mm)fine sand (0.125-0.25 mm)very fine sand (0.062-0.125 mm)	mm) but ds in the % 10 20 35 20	
Size o dimensional range (estimated values)	The grain size varies from coarse silt to coarse sand (0.03-0.68 it mainly falls in the fine sand class (0.125-0.25 mm); it sprea different fractions as listed below:	5 mm) but ds in the % 10 20 35 20 15	
Size o dimensional range (estimated values)	The grain size varies from coarse silt to coarse sand (0.03-0.68 it mainly falls in the fine sand class (0.125-0.25 mm); it spreadifferent fractions as listed below: granulometric classes coarse sand (0.5-1 mm) medium sand (0.25-0.5 mm) fine sand (0.125-0.25 mm) very fine sand (0.062-0.125 mm) coarse silt (0.031-0.062 mm) low	5 mm) but ds in the % 10 20 35 20 15	
Size o dimensional range (estimated values) o sorting Shape (rounding and sphericity)	The grain size varies from coarse silt to coarse sand (0.03-0.68 it mainly falls in the fine sand class (0.125-0.25 mm); it spreadifferent fractions as listed below: granulometric classes coarse sand (0.5-1 mm) medium sand (0.25-0.5 mm) fine sand (0.125-0.25 mm) very fine sand (0.062-0.125 mm) coarse silt (0.031-0.062 mm) low rounding: angular; sphericity: low	5 mm) but ds in the % 10 20 35 20 15	
Size o dimensional range (estimated values) o sorting Shape (rounding and sphericity) Surface morphology	The grain size varies from coarse silt to coarse sand (0.03-0.68 it mainly falls in the fine sand class (0.125-0.25 mm); it spread different fractions as listed below: granulometric classes coarse sand (0.5-1 mm) medium sand (0.25-0.5 mm) fine sand (0.125-0.25 mm) very fine sand (0.062-0.125 mm) coarse silt (0.031-0.062 mm) low faceted	5 mm) but ds in the % 10 20 35 20 15	
Size Size o dimensional range (estimated values) o sorting Shape (rounding and sphericity) Surface morphology Orientation	The grain size varies from coarse silt to coarse sand (0.03-0.68 it mainly falls in the fine sand class (0.125-0.25 mm); it spread different fractions as listed below: granulometric classes coarse sand (0.5-1 mm) medium sand (0.25-0.5 mm) fine sand (0.125-0.25 mm) very fine sand (0.062-0.125 mm) coarse silt (0.031-0.062 mm) low rounding: angular; sphericity: low faceted absent	5 mm) but ds in the % 10 20 35 20 15	
	DSCOPIC FEATURES C Mineralogic composition Structure Texture Interactions with the aggregate Porosity o tipology o ubication o % (by volume) o origin	Discortion relationess of the bindexMineralogic compositioncalcium carbonate (CaCO3) originated from the carbonation p an air-hardening limeStructurelumpyTexturemicritic (dimension of calcite crystals 4-10 μm)Interactions with the aggregateabsentPorosity••tipologyvoids and microcracks•ubicationintergranular and intragranular•% (by volume)•primary (voids naturally present within the aggregate or ca shrinkage of the binder during setting and hardening)	

6	Composition (% by volume) (estimated values)	The aggregate have a silicatic and carbonatic composition; in decreasing abundance it spread as listed below:	ı order of
	(rocks or mineral types	%
		 pyroclastic volcanic rock fragments (red pozzolan containing piroxenes and plagioclases fenocristals and vulcanic glass) 	55
		 sedimentary rocks fragments identified as sparitic limestones 	35
		 metamorphic rock fragments classified as schists, quartzites and argillites 	5
		effusive volcanic rocks fragments (lavas)	5
7	Admixtures	-	
8	Binder/Aggregate Ratio (by volume)	~1:3	

CONC	CONCLUSIONS			
1	Mixture characterization	It is a mortar composed of air-hardening lime and an aggregate consisting of approximately 55% of red pozzolan and the remaining 45% by volume of a calcitic sand obtained by crushing a sparitic limestone. The average size of the aggregate falls into the fine sandstone class and ranges between 0.125 and 0.25 mm; their maximum diameter is 0.68 mm. The binder/aggregate ratio is close to 1:3 by volume.		
2	Secondary processes and decay products	No neoformation phases attributable to degradation processes are observed.		

Inner layer

This layer shows compositional and textural characteristics quite similar to samples M2 and M3.

sample M4 - outer layer: thin-section photograph (transmitted light, X polars).

Dr. Geol. Davide Melica – Consulenza e Diagnostica per il Restauro e la Conservazione

sample M4 - inner layer: thin-section photograph (transmitted light, X polars).

Code	Sample type	Sampling zone	Adopted analisys
M5	fragments of reddish restoration mortar	west arm, vault	
M8		west arm, vault	ST, OM-TL

samples M5, M8: sampling point.

Stereoscopic microscopy

sample M5

sample M8

The two samples have the same compositional and textural characteristics and therefore belong to the same mortar.

Optical microscopy on thin section

MICR	MICROSCOPIC FEATURES OF THE BINDER		
1	Mineralogic composition	calcium carbonate (CaCO $_3$) originated from the carbonation process of an air-hardening lime	
2	Structure	homogeneous	
3	Texture	micritic (dimension of calcite crystals 4-10 µm)	
4	Interactions with the aggregate	absent	
5	Porosity		
5.1.	o tipology	voids	
5.2.	o ubication	intergranular and intragranular	
5.3.	o % (by volume)	very high (~35%)	
5.4.	o origin	primary (voids naturally present within the aggregate or caused by shrinkage of the binder during setting and hardening)	
MICR	OSCOPIC FEATURES O	F THE AGGREGATE	
1	Size		
1.1.	 dimensional range (estimated values) 	The grain size varies from coarse silt to coarse sand (0.03-1 mm) but it mainly falls in the medium sand and fine sand classes (0.15-0.35 mm); it spreads in the different fractions as listed below:	
		granulometric classes %	
		coarse sand (0.5-1 mm) 10	
		medium sand (0.25-0.5 mm) 30	
		fine sand (0.125-0.25 mm) 25	
		very fine sand (0.062-0.125 mm) 20	
		coarse silt (0.031-0.062 mm) 15	
1.2.	o sorting	low	
2	Shape (rounding and sphericity)	rounding: angular; sphericity: low	
3	Surface morphology	faceted	
4	Orientation	absent	
5	Distribution	homogeneous	
6	Composition (% by volume) (estimated values)	The aggregate have a silicatic composition; in order of decreasing abundance it spread as listed below:	
		rocks or mineral types %	
		pyroclastic volcanic rock fragments (red pozzolana 100 containing piroxenes and plagioclases fenocristals and volcanic glass)	
7	Admixtures	-	
8	Binder/Aggregate Ratio (by volume)	~1:3.5	

CONCLUSIONS		
1	Mixture characterization	The mortar consists of carbonated aerial lime and red pozzolan mixed according to a binder/aggregate ratio close to 1:3.5 by volume. The aggregate size varies between 0.03 and 1 mm but mostly falls in the range of 0.15-0.35 mm (medium and fine sandstone grain size classes).
2	Secondary processes and decay products	The sample is hard and shows no signs of degradation.

Sample M5 shows a surface layer of carbonated lime about 100 μm thick

Sample **M8** shows a surface layer of carbonated lime, 150-250 μ m thick, over which rests a layer of gypsum with a sparitic texture and small tabular crystals; the composition and texture of this latter layer seem to correspond to those of sample **M6**.

sample M5: thin-section photograph (transmitted light, X polars).

sample M8: thin-section photograph (transmitted light, X polars).

Dr. Geol. Davide Melica - Consulenza e Diagnostica per il Restauro e la Conservazione

Code Sample type		Sampling zone	Adopted analisys	
M7	fragment of gray restoration mortar	west arm, vault	ST, OM-TL	

sample M7: sampling point.

Stereoscopic microscopy

sample M7 photograph under the stereomicroscope.

Optical microscopy on thin section

MICR	MICROSCOPIC FEATURES OF THE BINDER		
1	Mineralogic composition	calcium carbonate (CaCO $_3$) originated from the carbonation p an air-hardening lime	rocess of
2	Structure	lumpy	
3	Texture	micritic (dimension of calcite crystals 4-10 µm)	
4	Interactions with the aggregate	absent	
5	Porosity		
5.1.	o tipology	voids and microcracks	
5.2.	o ubication	intergranular	
5.3.	 % (by volume) 	low (~15%)	
5.4.	o origin	primary (caused by shrinkage of the binder during setting and h and secondary (due to degradation processes)	ardening)
MICR	OSCOPIC FEATURES O	F THE AGGREGATE	
1	Size		
1.1.	 dimensional range (estimated values) 	The grain size varies from coarse silt to medium sand (0.03-0.7 it mainly falls in the fine sand and very fine sand classes (0.1-0 it spreads in the different fractions as listed below:	mm) but 0.25 mm);
		granulometric classes	%
		coarse sand (0.5-1 mm)	10
		medium sand (0.25-0.5 mm)	15
		fine sand (0.125-0.25 mm)	35
		very fine sand (0.062-0.125 mm)	30
		coarse silt (0.031-0.062 mm)	10
1.2.	o sorting	low	
2	Shape (rounding and sphericity)	rounding: angular or subrounded; sphericity: medium or low	
3	Surface morphology	smooth or faceted	
4	Orientation	absent	

6	Composition (% by volume) (estimated values)	The aggregate have a carbonatic and silicatic composition; in decreasing abundance it spread as listed below:	n order of
		rocks or mineral types	%
		 sedimentary rocks fragments identified as micritic, microsparitic and sparitic limestones, marly limestone 	35
		• metamorphic rocks fragments classified as schists, quartzites and argillites	30
		feldspars crystals	15
		• fragments of effusive volcanic rocks with microporphyric texture and intrusive volcanic rocks (granites?)	15
		 fragments of quartz-rich silico-clastic sedimentary rocks (siltstones and fine-grained sandstones) 	5
		chert, anphiboles, serpentinites	traces
7	Admixtures	-	
8	Binder/Aggregate Ratio (by volume)	~1:3	

CONC	CONCLUSIONS		
1	Mixture characterization	It is a mortar of air-herdening lime and river sand, mixed according to a binder/aggregate ratio close to 1:3 by volume. The sandy aggregate is composed of fragments of different lithotypes of sedimentary, metamorphic and volcanic origin with sizes predominantly between 0.1 and 0.25 mm.	
2	Secondary processes and decay products	No signs of degradation are observed.	

sample M7: thin-section photograph (transmitted light, X polars).